Ingredients
- Two small purple potatoes, half lengthwise
- Four strips bacon
- (optonal) Pickled green Thai chiles
- Salt and pepper, to taste
- Olive oil
The finished product.
Discussion regarding the art and science of creating holes of low entropy, shifting them around,
and then filling them back up to operate some widget.
The discovery that adipose tissue from obese mice and humans is infiltrated with increased numbers of macrophages provided a major mechanistic advance into understanding how obesity propagates inflammation (4, 5). Adipose tissue contains bone marrow–derived macrophages, and the content of these macrophages tracks with the degree of obesity (4, 5, 31, 32). In some reports, greater than 40% of the total adipose tissue cell content from obese rodents and humans can be composed of macrophages, compared with ~10% in lean counterparts (32).That nearly half of fat tissue mass is actually not fat cells, but immune system cells is kind of amazing to me. A very similar thing happens in liver disease. Now, reference #32 is a mouse study (Weisberg et al., 2006) but it in turn cites two other mice studies that are more pertinent (Weisberg et al., 2003 and Xu et al., 2003). Both articles show that gene expression for various proteins that attract immune system cells are strongly up-regulated in the adipose tissue of fat mice. The question is why? Is it diet? I suspect partially, but the revelations regarding what cytomegalovirus can do to macrophages makes me suspect latent pathogens are attracting macrophages as lambs to the slaughter. Are lab mice susceptible to chronic infections given their conditions and short lifespan? Are these latent viruses transmitted from mother to infant?
![]() |
'Garish' describes the vivid blue colour quite well |
![]() |
Up on 'Vision Quest' in the David Thompson range. |
Not that infection rates were inversely related to serum vitamin D levels.
[1665.6] Vitamin D Supplementation during Pregnancy Part 2 NICHD/CTSA Randomized Clinical Trial (RCT): Outcomes
Carol L. Wagner, Donna Johnson, Thomas C. Hulsey, Myla Ebeling, Judy Shary, Pamela G. Smith, Betty Bivens, Bruce W. Hollis. Pediatrics/Obstetrics, Medical University of SC, Charleston, SC.
BACKGROUND: Vitamin D (vitD) deficiency during pregnancy is a serious public health issue, affecting mother and fetus. Establishing optimal vitD requirements of pregnant women is vital in preventing vitD deficiency and its health-associated comorbidities.
OBJECTIVE: Evaluate the effectiveness of high dose vitD supplementation in decreasing pregnancy comorbidity risks.
DESIGN/METHODS: Following their consent, pregnant women 12-16 wks' gestation were randomized into 1 of 3 tx grps stratified by race: 400, 2000 or 4000 IU vitD3/day until delivery. Women were evaluated for safety (Abstr#750939), efficacy and effectiveness with monthly 25(OH)D; 1,25(OH)2D; serum Ca, Cr, phos, and urinary Ca/Cr levels, all measured using standardized methodology. Comorbidities of pregnancy (preeclampsia, gest diabetes, any infection, preterm labor (PTL)/preterm birth (PTB) <37 wks GA) were recorded prospectively for each subject. Investigators and health team were blinded to tx grp.
RESULTS: Of the 494 women who enrolled in the study, 350 women continued until delivery: 98 African American (AA), 137 Hispanic (Hisp) and 115 Caucasian (Cauc) women; with 111 controls, 122 in 2000 IU and 117 in 4000 IU groups. There were no differences in baseline vitD status between dose groups. The mean 25(OH)D by dose group at delivery, as chronic level, and 1-month before delivery were significantly different between control and 2000, control and 4000, and 2000 vs. 4000 (p<0.0001). 25(OH)D had a direct influence on 1,25(OH)2D levels throughout pregnancy (p<0.0001) with 25(OH)D of 40 ng/mL required to obtain maximum 1,25(OH)2D production. In bivariate analyses controlling for race, PTL/PTB and infection were inversely related to 25(OH)D and were lowest in the 4000 IU grp (p<0.0001). In logistic regression, comparing 400 vs. 4000 IU and controlling for race, the risk of comorbidities were 0.50 (CI 0.27-0.95; p=0.03) among those in the 4000 IU grp. Using least sq means, when adjusting for race, 25(OH)D of women with comorbidities was 33.4 ng/mL compared to 39.0 ng/mL in those women without (p < 0.008).
CONCLUSIONS: VitD sufficiency was strongly associated with decreased risk for PTL/PTB and infection during pregnancy and comorbities of pregnancy, with the greatest effect with 4000 IU vitamin D/day regimen. Therefore, to attain a minimal 25(OH)D level of 40 ng/mL, we recommend 4000 IU/day for all pregnant women.E-PAS20101665.6
Vitamin D Supplementation during Pregnancy Part I NICHD/CTSA Randomized Clinical Trial (RCT): Safety ConsiderationsAn interesting pair of abstracts to be sure. I look forward to seeing the data for myself when it's published.
Carol L. Wagner, Donna Johnson, Thomas C. Hulsey, Myla Ebeling, Judy Shary, Pamela G. Smith, Betty Bivens, Bruce W. Hollis. Pediatrics, Medical University of SC, Charleston, SC.
BACKGROUND: Vitamin D (vitD) deficiency during pregnancy is a serious public health issue that affects both mother and fetus. Establishing the optimal vitD requirements of the pregnant woman is vital in preventing vitD deficiency.
OBJECTIVE: Evaluate the safety of high dose vitD supplementation during pregnancy in a RCT.
DESIGN/METHODS: Following their consent, pregnant women 12-16 wks' gestation were randomized into 1 of 3 treatment (tx) groups (grps) stratified by race: 400, 2000 or 4000 IU vitD3/day until delivery. Women were evaluated for safety, efficacy and effectiveness with monthly 25(OH)D; 1,25(OH)2D; serum Ca, Cr, phos, and urinary Ca/Cr levels, all measured using standardized methodology. Investigators & health team were blinded to tx grp.
RESULTS: Of the 494 women who enrolled in the study, 350 women continued until delivery: 98 African American, 137 Hispanic and 115 Caucasian women; with 111 controls, 122 in 2000 IU and 117 in 4000 IU grps. There were no differences in baseline 25(OH)D by dose grp. The mean 25(OH)D by dose grp at delivery, as chronic level, and 1-month before delivery were significantly different between control and 2000, control and 4000, and 2000 vs. 4000 (p<0.0001). 25(OH)D had a direct influence on 1,25(OH)2D levels throughout pregnancy (p<0.0001). Throughout the study, there were no differences between grps on any safety measure: serum Ca, Cr, urinary Ca/Cr ratios (pNS between grps). Not a single adverse event was attributed to vitD supplementation by the DSMB. Neonatal 25(OH)D was significantly correlated with maternal 25(OH)D overall, 1-month prior and at delivery (r2=0.6; OR 0.50); and was significantly different by tx group: 18.2±10.1 (control), 22.8±9.8 (2000 IU) and 26.5±10.3 ng/mL (4000 IU), (p<0.0001).